Search results for "Prokaryotic expression"

showing 2 items of 2 documents

Hepatitis B core particles as a universal display model: a structure-function basis for development

1999

AbstractBecause it exhibits a remarkable capability to accept mutational intervention and undergo correct folding and self-assembly in all viable prokaryotic and eukaryotic expression systems, hepatitis B core (HBc) protein has been favored over other proposed particulate carriers. Structurally, the unusual α-helical organization of HBc dimeric units allows introduction of foreign peptide sequences into several areas of HBc shells, including their most protruding spikes. Progress toward full resolution of the spatial structure as well as accumulation of chimeric HBc-based structures has brought closer the knowledge-based design of future vaccines, gene therapy tools and other artificial par…

Hepatitis B virusGenes ViralCryo-electron microscopyMacromolecular SubstancesProtein ConformationBiophysicsComputational biologyBiologyBiochemistryMolecular displayEpitopesProtein structureStructural BiologyGeneticsProkaryotic expressionAnimalsHumansMolecular BiologyDrug CarriersBinding SitesSpatial structureViral Core ProteinsStructure functionHepatitis B core proteinvirus diseasesCell BiologyBasis (universal algebra)Self-assemblyAntigenicityVirologyBiological EvolutionHepatitis B Core Antigensdigestive system diseasesFolding (chemistry)Protein structureElectron cryomicroscopyDimerizationHepatitis b coreFEBS Letters
researchProduct

DNA-induced structural changes in the papillomavirus capsid.

2001

ABSTRACT Human papillomavirus capsid assembly requires intercapsomeric disulfide bonds between molecules of the major capsid protein L1. Virions isolated from naturally occurring lesions have a higher degree of cross-linking than virus-like particles (VLPs), which have been generated in eukaryotic expression systems. Here we show that DNA encapsidation into VLPs leads to increased cross-linking between L1 molecules comparable to that seen in virions. A higher trypsin resistance, indicating a tighter association of capsomeres through DNA interaction, accompanies this structural change.

virusesImmunologyDna interactionBiologyMicrobiologychemistry.chemical_compoundVirologymedicineProkaryotic expressionHumansPapillomaviridaePapillomaviridaeVirus AssemblyStructure and AssemblyCapsomereDisulfide bondVirionbiochemical phenomena metabolism and nutritionTrypsinbiology.organism_classificationMolecular biologyCapsidchemistryInsect ScienceDNA ViralBiophysicsDNAmedicine.drugJournal of virology
researchProduct